viernes, 17 de abril de 2015

LOS EFECTOS DE CAMBIO CLIMÁTICO EN LOS MICROORGANISMOS DEL SUELO DEPENDEN DE LA DEPOSICIÓN ATMOSFÉRICA DE NITRÓGENO

Investigadores de España, Portugal y Estados Unidos han determinado que los efectos de cambio climático sobre el funcionamiento de los microorganismos del suelo están modulados por la deposición atmosférica de nitrógeno. De este modo, dependiendo de cuanta contaminación atmosférica de nitrógeno haya en una zona, la respuesta del sistema a los cambios esperados en las precipitaciones como consecuencia del cambio climático será diferente.

En el trabajo han colaborado Lourdes Morillas, Javier Roales y Antonio Gallardo, de la Universidad Pablo de Olavide (España); Jorge Durán, del Centro de Ecología Funcional de la Universidad de Coimbra (Portugal); Alexandra Rodríguez del Museo Nacional de Ciencias Naturales/CSIC (España), y Peter M. Groffman y Gary M. Lovett, del Cary Institute of Ecosystem Studies (Estados Unidos).


Como explica uno de los investigadores del equipo, Jorge Durán, uno de los aspectos más críticos del cambio climático es la intensificación del ciclo hidrológico en muchas zonas del planeta, es decir, un aumento de las sequías junto con tormentas más frecuentes e intensas. Esta intensificación afecta a la humedad del suelo, uno de los factores más importantes que controlan los procesos bioquímicos, con un aumento en la frecuencia de los ciclos de secado y rehumedecido.


Otro componente del cambio global es el alto nivel de deposición atmosférica de nitrógeno debido principalmente al uso de combustibles fósiles y la agricultura. Según Alexandra Rodríguez, el exceso de deposición de nitrógeno puede tener serias consecuencias en los ecosistemas, como por ejemplo desbalances de los nutrientes, la acidificación del agua y del suelo, la eutrofización (una excesiva concentración de nutrientes) de ecosistemas, los aumentos en las emisiones de N2O y cambios en la capacidad de almacenamiento de carbono en los suelos.


Por otro lado, indica Lourdes Morillas, es importante tener en cuenta a los microbios como mediadores de los ciclos biogeoquímicos. “Los cambios rápidos en la humedad del suelo son estresantes para los microbios, ya que deben invertir una gran cantidad de energía y recursos para responder a ellos. Por ello, es esperable que la capacidad de los microorganismos del suelo de responder a cambios en los patrones de lluvia varíe con el estado nutricional del suelo”.

A pesar de su importancia, pocos estudios han examinado las interacciones entre la deposición de nitrógeno y los cambios en el patrón de precipitaciones, y existe una gran incertidumbre sobre cómo el aumento de nitrógeno modulará la capacidad del suelo de resistir al cambio climático. El trabajo llevado a cabo por este equipo de científicos trata de contribuir a paliar este vacío.

Experimento de adición de nitrógeno y cambios de humedad

En 1996, los investigadores del Cary Institute of Ecosystem Studies seleccionaron seis parcelas y una de cada par fue tratada regularmente con nitrógeno, en una experiencia que se ha prolongado durante 15 años. En mayo de 2012, junto con los investigadores de España y Portugal, se recolectaron muestras de estos suelos y se sometieron a cuatro tratamientos de secado y rehumedecido. En uno de ellos el suelo se mantuvo a humedad constante y, en los otros tres, los suelos se sometieron a uno, dos y cuatro eventos de secado y rehumedecido.

El equipo realizó antes, durante y después de la incubación una serie de técnicas de laboratorio para valorar el estado nutricional y funcional del suelo. Por ejemplo, se estimó la cantidad y diversidad de microorganismos, las tasas de mineralización de nitrógeno o la respiración microbiana.

El aumento en la deposición de nitrógeno atenuaría el impacto

A partir de este experimento, los investigadores pudieron demostrar que la capacidad de los suelos de los bosques templados de ciclar carbono y nitrógeno se verá significativamente alterada por cambios en el patrón de precipitaciones que probablemente ocurran como consecuencia del cambio climático. “El aumento de ciclos de secado y rehumedecido probablemente provocará aumentos en las cantidades de amonio y nitrógeno inorgánico total del suelo, pero disminuciones en el nitrato, debido a una disminución de la tasa de nitrificación. También provocará una disminución de la biomasa microbiana y del intercambio de gases de efecto invernadero entre el suelo y la atmósfera”, precisa Javier Roales.


El resultado más significativo del estudio, que se publicará próximamente en Global Change Biology, es el papel clave de la deposición de nitrógeno como modulador de las repuestas de estos bosques al cambio climático. Los científicos apuntan a una clara interacción entre estos dos componentes del cambio global (deposición de nitrógeno y cambio climático), de manera que el aumento de la deposición de nitrógeno “podría atenuar los impactos del esperado aumento de los ciclos de secado y rehumedecido con el cambio climático sobre importantes procesos del suelo”. Así, este tipo de estudios empíricos que evalúan la interacción de varios factores son de especial interés para la creación de modelos que puedan predecir de forma realista la respuesta de los ecosistemas al cambio global.

FUENTE: Cristina G. Pedraz/DICYT

miércoles, 1 de abril de 2015

“DOMESTICAR” LAS PLANTAS PARA LA ALIMENTACIÓN DEL FUTURO

La humanidad ha logrado aumentar la producción y la calidad de los alimentos a lo largo de su historia gracias a la modificación constante de las plantas desde el Neolítico. Pero en los próximos 50 años los seres humanos tendrán que producir más alimentos de los que han cultivado durante toda su historia. Así lo advierte la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). A ello se suman los efectos del cambio climático.
Además, en el último medio siglo la población mundial se ha doblado, mientras que el aumento del rendimiento de los cereales se ha multiplicado por tres. Las mejoras de producción se han conseguido, entre otros, aumentando la superficie cultivada, el agua y los abonos utilizados. No obstante, "esto ya no es posible, lo que nos obliga a utilizar todas las herramientas a nuestro alcance, como la mejora en el conocimiento básico de la genética de plantas”, comentó Josep Casacuberta, coordinador del programa de genómica de plantas y animales del Centro de Investigación Agrigenómica (CRAG), durante el encuentro organizado en marzo por B·Debate, Centro Internacional para el Debate Científico, una iniciativa de Biocat y Obra Social “la Caixa”.

Las especies del futuro: cómo conseguir más con menos
Ahora, uno de los retos de futuro de la agrigenómica es conseguir variedades de plantas más eficientes para aumentar la producción sin incrementar los recursos de espacio, agua y abono invertidos al cultivarlas. Para lograrlo, los científicos se centran en cómo resolver el problema de la alimentación de una población que no deja de crecer. Es el caso de Rod Wing, director del Instituto de Genómica de Arizona (EE UU), cuya investigación gira en torno al arroz.
"Los pueblos que dependen del arroz doblarán sus habitantes en 2050, y este cereal ya es la base de la alimentación del 50% de la población mundial”, señaló Wing. Para mejorarlo es necesario que "el arroz que sea más resistente, más fácil de cultivar y más nutritivo”, destacó en el encuentro de Barcelona ante más de 100 expertos de todo el mundo.
Hasta el momento se han secuenciado los genomas de 3.000 variedades diferentes de arroz proveniente de 89 países, pero ahora se necesita integrar e interpretar toda esa información. Para ello, el científico estadounidense ha participado en la creación del International Rice Informatics Consortium, una iniciativa que busca centralizar y optimizar todos los esfuerzos realizados.
Aparte del arroz, desde el año 2000 –cuando se publicó el primer genoma de la planta Arabidopsis– se dispone del genoma completo de más de 80 especies, así como el genoma de diferentes variedades de la misma especie. Constituyen bases de datos a las que acceden continuamente los mejoradores de plantas.

¿Cómo han cambiado los vegetales que comemos?
La domesticación es el proceso por el cual los hombres, desde hace más de 10.000 años, han ido seleccionando las características que mejor servían de cada planta, dirigiendo así en gran medida su evolución. Pero estudiar estos cambios no es sencillo.
El grupo de investigación INRA, liderado por Oliver Loudet, estudia las variaciones en Arabidopsis recogiendo variedades de América, de Sicilia, e incluso de áreas aisladas (y por tanto con plantas no domesticadas) como Tajikistán, en Asia Central. A partir de ahí estudian cómo se comportan en condiciones de estrés como la falta de agua, observan cómo resisten y crecen y buscan las diferencias genéticas (y epigenéticas) que las explican.
Algo parecido hace el grupo de Carlos Alonso-Blanco, del Centro Nacional de Biotecnología, en Madrid: estudian las variaciones de la misma planta y su adaptación a las estaciones. Y en esa búsqueda han encontrado varias regiones asociadas con el tiempo en que florecen, con su adaptación a las altas temperaturas o incluso con su resistencia a contaminantes.

Más allá de los transgénicos
Una vez conocidas estas modificaciones, ¿cómo se pueden emplear para mejorar los cultivos? Antes, estos cambios en las variedades vegetales se conseguían de forma intuitiva. Ahora, gracias a la investigación científica, existen diferentes técnicas de mejora más precisas, como la selección asistida por marcadores o la transgenia, que es la última que se ha incorporado en la mejora de plantas.
“Nos alimentamos de especies inventadas por el ser humano, fruto de la modificación genética, como el maíz”, apuntó Casacuberta. Para este investigador, líder científico del encuentro y ex miembro del panel de transgénicos de la Autoridad Europea de Seguridad Alimentaria (EFSA), los transgénicos no son ni la única ni la completa solución, pero aboga por disminuir la alarma generada sobre este tipo de cultivos.
“Los transgénicos siguen un control estricto de riesgos y, además, las nuevas técnicas permitirán un control mucho más fino de los cambios introducidos”, observó. Una de esas técnicas es la llamada CRISPR, es la gran promesa en la terapia génica y ya se discute su uso hasta en la modificación de embriones humanos.
Tal y como recordó Casacuberta, “variaciones en el genoma se han producido constantemente en las plantas; incluso en los años 50 se usaron rayos X para provocar modificaciones que se encuentran en muchos alimentos actuales". El científico se mostró tajante: "Sin estos avances no podríamos dar respuesta al reto de la alimentación del futuro y mejorar las especies que comemos”.

Fuente: B·Debate